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ABSTRACT. We show that, for each compact subset of the real line of infinite cardinality
with an isolated point, the space of Whitney jets on the set does not possess a basis consisting
only of polynomials. On the other hand, polynomials are dense in any Whitney space. Thus,
there are no general results about stability of bases in Fréchet spaces.

Dedicated to the memory of M. M. Dragilev

1. Introduction

Let X be a Banach space with a Schauder basis. By the Krejn-Mil’man-Rutman theorem
(see Theorem 3.2 below) the basis is stable. This means that sufficiently small perturbations
of basis elements preserve the basis property of the system. Hence, if X is a function space
such that polynomials are contained and dense in X , then the space possesses a basis consist-
ing only of polynomials. Our aim is to show that, for Fréchet spaces, the situation may differ.
Let K be a compact subset of R containing infinitely many points and such that the set of
isolated points is not empty. We show that the space of Whitney jets E (K) cannot have a ba-
sis of polynomials. Clearly, polynomials are dense in each Whitney space. Combining these
facts, we see that there are no general conditions for stability of bases in Fréchet spaces.

The paper is organized as follows. Section 2 contains the main result about the absence
of polynomial bases in some Whitney spaces. In Section 3, we recall known results about
stability of bases in Banach spaces and their generalizations to the case of Fréchet spaces.
Thus, we get an apparent contradiction of our result with the theorems on stability of bases
in Fréchet spaces. To clarify this seeming contradiction, by way of illustration, we consider
in Section 4 an example of a set K from the considered class with a known basis of the space
E (K). For the set K = [−1,1]∪{2} we present a basis in the space E (K) and analyze the
conditions of proximity in the stability theorems for Fréchet spaces. We show that, in our
case, these conditions cannot be achieved even though for elements from a dense set.

At the end of the article, a hypothesis on the form of bases in Whitney spaces is proposed.

2. The absence of polynomial bases in some Whitney spaces

Let X be a linear topological space over the field K. A sequence (en)
∞
n=1 ⊂ X is a (topo-

logical) basis for X if for each f ∈ X there is a unique sequence (ξn( f ))∞
n=1 ⊂ K such that

the series ∑
∞
n=1 ξn( f )en converges to f in the topology of X . In the case of Fréchet spaces,

the functionals ξn are continuous, so (en)
∞
n=1 is a Schauder basis.
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We consider bases in the Whitney spaces. Let K be a compact subset of R and I be a
closed interval containing K. The Whitney space E (K) consists of traces on K of functions
from C∞(I), that is the element f of E (K) is a jet ( f ( j)(x))x∈K, j≥0 such that there exists an
extension F ∈C∞(I) with F( j)(x) = f ( j)(x) for all x ∈ K and j ∈ Z+.

Since E (K) is a factor space, it should be equipped with the quotient topology. By Whit-
ney [16], this topology is given by the seminorms

(2.1) ‖ f ‖q = | f |q,K + sup
{
|(Rq

y f )(n)(x)| · |x− y|n−q : x 6= y, n≤ q
}
, q ∈ Z+.

Here, | f |q,K = sup{| f (k)(x)| : x ∈ K, k ≤ q} and Rq
y f (·) = f (·)−∑

q
k=0

f (k)(y)
k! (· − y)k is the

q−th Taylor remainder of f at y.
In the case of a singleton {a}, due to Borel (see e.g. [9], p.69), E ({a}) ' ω = RN. Its

dual is the space ϕ of finite sequences, see e.g. [7], p.288.
The natural basis of the space E ({a}) is given by the sequence (en)

∞
n=0, where the jet en

is defined by the function en(x) =
(x−a)n

n! at x = a, so e( j)
n (x) = 1 if j = n and x = a and

e( j)
n (x) = 0 for all other x ∈ K and j ∈ Z+. The functionals ηn( f ) = f (n)(a) with n ≥ 0 are

biorthogonal to (en)
∞
n=0, that is ηn(em) = δnm. Since the sequence (ηn)

∞
n=0 forms a basis in

the dual space, for any functional η ∈ E ({a})′ there exist β0, . . . ,βN such that

(2.2) η( f ) =
N

∑
k=0

βk f (k)(a), f ∈ E ({a}).

Suppose K contains infinitely many points and the set of isolated points of K is not empty.
Then K = K0∪{a}, where the point a is isolated. This representation yields a decomposition
E (K) = E (K0)⊕E ({a}) and, correspondingly, for the dual spaces

(2.3) E (K)′ = E (K0)
′⊕E ({a})′.

Given a function f ∈ E (K), let F ∈C∞(I) be any extension of f . Then, for n ≤ q, by the
Lagrange form of the remainder, (Rq

y f )(n)(x) = [F(q)(θ)− f (q)(y)] (x− y)q−n/(q− n)! for
some point θ between x and y. By (2.1), this gives ‖ f ‖q ≤ 3 |F |q, I.

It is easily seen that polynomials are dense in each Whitney space. Indeed, without loss of
generality we can assume that K ⊂ [−1,1]. Then, given f ∈ E (K) and q ∈ Z+, by e.g. Theo-
rem A in [6], we can approximate any extension F ∈C∞([−1,1]) together with all its deriva-
tives up to order q. Hence, for each ε > 0 there is a polynomial P with |F −P|q, [−1,1] < ε .
Therefore, || f −P||q < 3ε. The base of neighborhoods of zero in the space E (K) is given by
the sets Uq,m = {g ∈ E (K) : ||g||q < 1

m} for q ∈ Z+ and m ∈ N. Thus, each neighborhood of
f contains a polynomial.

Suppose the space E (K) has a topological basis ( fn)
∞
n=1 with the corresponding biorthog-

onal functionals (ζn)
∞
n=1. Since the space is nuclear, by the Dynin-Mityagin theorem ([12],

T.9), the basis is absolute. Hence, for each q ∈ Z+ and for each f ∈ E (K) the series

(2.4)
∞

∑
n=1
|ζn( f )| · || fn||q

converges.
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It should be noted that absoluteness of bases in some spaces of analytic functions was
originally proved by M. M. Dragilev in [3].

Theorem 2.1. Let K ⊂ R be an infinite compact set with an isolated point. Then the space
E (K) does not possess a polynomial basis.

Proof. Suppose, to derive a contradiction, that the sequence of polynomials ( fn)
∞
n=1 with the

biorthogonal functionals (ζn)
∞
n=1 forms a basis in E (K). As above, let K = K0∪{a}, where

a is an isolated point.
Take q= 0 in (2.4). Since fn is a polynomial and the set K is infinite, the value εn := || fn||0

is positive for each n. By (2.3), ζn = ξn +ηn where ξn ∈ E (K0)
′ and ηn ∈ ϕ. By (2.2), for

each n there is a finite set (βk,n)
Nn
k=0 with βNn,n 6= 0 so that

ηn( f ) =
Nn

∑
k=0

βk,n f (k)(a)

for each f ∈ E (K). In particular, if f |K0 = 0 then ξn( f ) = 0 for all n. Therefore, for such
functions, the series ∑

∞
n=1 |ηn( f )| · εn converges. The functionals (ηn)

∞
n=1 are linearly inde-

pendent, so the sequence (Nn)
∞
n=1 is not bounded. Choose (n j)

∞
j=1 such that Nn j increases

strictly. Then the series ∑
∞
j=1 |ηn j( f )| · εn j converges for each f with f |K0 = 0, which is im-

possible, since by induction one can choose f (Nn j )(a) large enough such that |ηn j( f )| ≥ ε−1
n j

for all j. �

Remark. There might be a generalization of the theorem to the case of non-algebraic
compact set K ⊂ RN with an isolated point.

Corollary 2.2. There are no general conditions for stability of bases in Fréchet spaces.

Indeed, we expect from such conditions a possibility to apply them at least to elements
from a dense subset.

Nevertheless there are two theorems on stability of bases in Fréchet spaces. We consider
them in the next section.

3. Arsove generalization of the Paley-Wiener Theorem

For the convenience of the reader, first we recall two theorems about stability of bases in
Banach spaces.

Theorem 3.1. (Paley-Wiener Theorem) Let ( fn)
∞
n=1 be a basis for a Banach space X and

(gn)
∞
n=1 be vectors in X. Suppose there exists a constant λ ∈ [0,1) such that the inequality

||
N

∑
n=1

cn( fn−gn)|| ≤ λ ||
N

∑
n=1

cn fn||

holds for all finite sequences c1,c2, . . . ,cN of scalars. Then (gn)
∞
n=1 is a basis for X.

The theorem was proved in [14] for Hilbert spaces, see also [9], p.163. Its extension to the
case of Banach spaces was given in [2], Theorem 1.1.
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Theorem 3.2. (Krejn-Mil’man-Rutman Theorem)[8] Let ( fn)
∞
n=1 be a basis for a Banach

space X and (ζn)
∞
n=1 be a sequence of biorthogonal functionals. Then each system of vectors

(gn)
∞
n=1 satisfying the condition

∞

∑
n=1
||ζn|| · || fn−gn||< 1

is a basis in X.

Corollary 3.3. Suppose a Banach function space X has a basis and polynomials are dense
in X. Then X possesses a polynomial basis.

Indeed, given a biorthogonal system ( fn,ζn)
∞
n=1, for each n we can choose a polynomial

gn with || fn−gn||< 2−n−1 ||ζn||−1.

The next generalizations of the Paley-Wiener theorem for the case of Fréchet spaces are
due to Arsove [1], see also Theorem IX.4.4 in [10].

Assume that X is a Fréchet space whose topology is given by an increasing family of
seminorms (|| · ||q)∞

q=0.

Theorem 3.4. ([1], T.5) Let ( fn)
∞
n=1 be a basis for X and (gn)

∞
n=1 be vectors in X. Suppose

there exists a sequence (λq)
∞
q=0 with λq ∈ [0,1) such that the inequality

||
N

∑
n=1

cn( fn−gn)||q ≤ λq ||
N

∑
n=1

cn fn||q

holds for all q ∈ Z+ and all finite sequences c1,c2, . . . ,cN of scalars. Then (gn)
∞
n=1 is a basis

for X.

The Fréchet metric of X is given as ρ( f ,g) = ∑
∞
q=0 2−q−1 || f−g||q

1+|| f−g||q . We can consider as
well the second version of the generalized Paley-Wiener theorem.

Theorem 3.5. ([1], T.1) Let ( fn)
∞
n=1 be a basis for X and (gn)

∞
n=1 be vectors in X. Suppose

there exists a constant λ ∈ [0,1) such that

ρ(
N

∑
n=1

cn( fn−gn),0)≤ λ ·ρ(
N

∑
n=1

cn fn,0)

holds for all finite sequences c1,c2, . . . ,cN of scalars. Then (gn)
∞
n=1 is a basis for X.

4. Example and conjecture

We see that Corollary 3.3 cannot be extended to the case of all Fréchet spaces. In order
to illustrate why the last two theorems do not imply the existence of polynomial bases in the
spaces of Whitney jets, we analyze the proximity conditions in these theorems. As example,
we consider the simplest infinite compact set K of the considered class with a known basis
of the space E (K).

Example. Let K = [−1,1]∪{2}. Then E (K) = E ([−1,1])⊕E ({2}). If X = Y ⊕Z and
bases (yn)

∞
n=0, (zn)

∞
n=0 of the spaces Y,Z, respectively, are given, then, clearly, the sequence

y0,z0, y1,z1, . . . ,yn,zn, . . . is a basis in the space X . In our case, by Lemma 25 in [12], the
Chebyshev polynomials (Tn)

∞
n=0 form a basis in the space E ([−1,1]). For a basis in the
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space E ({2}) we take the jets (en)
∞
n=0 given by the functions (x− 2)n/n! at x = 2, n ∈ Z+.

Let f2n−1(x) = Tn−1(x) for |x| ≤ 1, f ( j)
2n−1(2) = 0 and f2n = en−1 for n ∈ N, j ∈ Z+. Then

( fn)
∞
n=1 is a basis in E (K).

Let us illustrate why, for each sequence of polynomials (gn)
∞
n=1 and (λq)

∞
q=0 ⊂ [0,1), the

condition of Theorem 3.4 cannot be satisfied. Suppose, for contradiction, such sequences
exist. Let us take f4 = e1, so this is a jet given by the function x− 2 at x = 2. An easy
computation gives || f4||0 = 0 and || f4||q = 2 for q ≥ 1. We consider the polynomial g4 that
corresponds to f4 in the sense of the inequality in Theorem 3.4. Take ck = 0 for all k, except
c4 = 1. Then, for q = 0 we have || f4− g4||0 = ||g4||0 ≤ λ0|| f4||0 = 0. Therefore, g4 = 0,
which is impossible, because, in this case, for q = 1 we get || f4−g4||1 = || f4||1 ≤ λ1|| f4||1,
a contradiction for λ1 < 1 and || f4||1 = 2.

In the case of Theorem 3.5, similarly, given polynomial g4 and 0 < λ < 1, we see that
g4 6= 0. Let ck = 0 for all k, except c4 = M for large positive M. Then the condition of the
theorem has the form

(4.1) ρ(M( f4−g4),0)≤ λ ·ρ(M f4,0).

For the known values of || f4||q with q ∈ Z+, we have ρ(M f4,0) = 1
2

2M
1+2M . Hence the right-

hand side of (4.1) does not exceed λ

2 . On the other hand, we can estimate ρ(M( f4−g4),0)
from below by means of only term of the sum corresponding to q = 0. Hence the left-hand
side of (4.1) exceeds 1

2
M ||g4||0

1+M ||g4||0 . Since g4 is a nontrivial polynomial, the value ||g4||0 is pos-

itive. For large enough values M, this fraction is so closed to 1
2 , as we wish, so it exceeds λ

2 ,
a contradiction.

We see that Theorems 3.4, 3.5 have somewhat limited applicability, since the proximity
conditions in them are too strong for some Fréchet spaces.

The existence of polynomial bases in a Whitney space E (K) is not related with the exten-
sion property of the set K (availability of a continuous linear extension operator W : E (K)→
C∞(I) or, equivalently, the dominating norm property of the space E (K), see e.g. [11] for
the definition of the DN property). In [4], bases were constructed for Cantor type sets K(Λ).
Choosing a Cantor type set with fast decreasing lengths of intervals in the Cantor procedure,
we can get a space E (K(Λ)) without DN property. In addition, both for small sets K(Λ) and
for the set [−1,1], Faber bases were presented in [4] and [5]. In both cases, bases were given
by means of the Newton interpolating polynomials with nodes at “nearly” Leja points.

Recall that a polynomial basis (Pn)
∞
n=0 in a function space is called a Faber (or strict poly-

nomial) basis if degPn = n for all n, see e.g. [13]. Also, points (ak)
∞
k=1⊂K are Leja if a1 ∈K

is arbitrary, and, once a1,a2, . . . ,ak−1 have been determined, ak is chosen so that it provides
the maximum modulus of the polynomial (x− a1) · · ·(x− ak−1) on K. For applications of
Leja points in Approximation Theory we refer the reader to [15].

Based on these considerations, we put forward the following hypothesis.

Conjecture. Given a compact set K ⊂ R of infinite cardinality, the space E (K) has a
polynomial basis if and only if the set K is perfect. In addition, if K is perfect, then E (K)
possesses a strict polynomial basis.
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